Prinsip-prinsip dan konsep-konsep kimia dasar yang perlu dipelajari oleh siswa dan mahasiswa untuk menjelajah ilmu kimia. Diterjemahkan dari Buku Chemistry 10th Edition Raymond Chang Tahun 2010.

  • Helium Primordial dan Teori Big Bang

    Pernahkah Anda berpikir dari mana kita berasal? Bagaimana alam semesta dibentuk? Kapan sejarah alam semesta ini dimulai?.

  • Struktur Atom

    Atom terdiri dari proton, neutron dan elektron.

  • Rumus Kimia

    Kimiawan menggunakan rumus kimia untuk mengekspresikan komposisi molekul dan senyawa ionik dalam simbol kimia.

  • Molekul dan Ion

    Sebagian besar materi terdiri dari molekul atau ion yang dibentuk oleh atom.

  • Spektrometer Massa

    Metode yang paling langsung dan paling akurat untuk menentukan massa atom dan molekul adalah metode spektrometri massa.

UTS Kimia Dasar 1 Biologi 2020

 

1.
Massa atom 17Cl³⁵ (75,53 persen) dan ₁₇Cl³⁷ (24,47 persen) masing-masing adalah 34,968 sma dan 36,956 sma. Hitung massa atom klorin rata-rata. Persentase dalam tanda kurung menunjukkan kelimpahan relatif.
2.
Populasi bumi adalah sekitar 6,5 miliar. Misalkan setiap orang di Bumi berpartisipasi dalam proses penghitungan partikel identik pada kecepatan dua partikel per detik. Berapa tahun yang dibutuhkan untuk menghitung 6,0 x 10²³ partikel? Asumsikan ada 365 hari dalam setahun.
3.
Hitung massa molekul atau massa rumus (dalam sma) dari masing-masing zat berikut:
(a) CH4, (b) NO2, (c) SO3, (d) C6H6, (e) NaI, ( f) K2SO4, (g) Ca3 (PO4)2.
4.
Karbon memiliki dua isotop stabil, ₆C¹² dan ₆C¹³, dan fluor hanya memiliki satu isotop stabil ₉F¹⁹. Berapa banyak puncak yang akan Anda amati dalam spektrum massa ion positif CF₄+? Asumsikan bahwa ion tidak pecah menjadi fragmen yang lebih kecil.
5.
Timah (Sn) ada di kerak bumi sebagai SnO2. Hitung persentase komposisi berdasarkan massa Sn dan O dalam SnO2.
6.
Setarakan persamaan berikut
(a)    C + O2 à CO
(b)   CO  +  O2  à  CO2
(c)    H2  +  Br2  à  HBr
(d)   K  +  H2O  à  KOH
(e)    Mg  +  O2  à  MgO
(f)    O3  à  O2
(g)   H2O2  à  H2O  +  O2
(h)   N2  +  H2  à  NH3
(i)     Zn  +  AgCl  à  ZnCl2  +  Ag
(j)     S8  +  O2  à  SO2
(k)   NaOH  +  H2SO4  à  Na2SO4  +  H2O
(l)     Cl2  +  NaI  à  NaCl  +  I2
(m) KOH  +  H3PO4  à  K3PO4  +  H2O
(n)   CH4  +  Br2  à  CBr4  +  HBr
7.
Manakah dari persamaan berikut yang paling mewakili reaksi yang ditunjukkan pada gambar?
(a)    8A  +  4B  à  C  +  D
(b)   4A  +  8B  à  4C  +  4D
(c)    2A  +  B  à  C  +  D
(d)   4A  +  2B  à  4C  +  4D
(e)    2A  +  4B  à  C  +  D
8.
Perhatikan reaksinya
2A  +  B  à  C
Dalam diagram di sini yang mewakili reaksi, reaktan manakah, A atau B, yang merupakan pereaksi pembatas? (b) Dengan asumsi reaksi lengkap, gambarkan representasi model molekul dari jumlah reaktan dan produk yang tersisa setelah reaksi. Susunan atom dalam C adalah ABA.
9.
Hidrogen fluorida digunakan dalam pembuatan Freon (yang menghancurkan ozon di stratosfer) dan dalam produksi logam aluminium. Itu disiapkan oleh reaksi
CaF2  +  H­2SO4   à   CaSO4  +  2HF
Dalam satu proses, 6,00 kg CaF2 diperlakukan dengan kelebihan H2SO4 dan menghasilkan 2,86 kg HF. Hitung persentase hasil HF.

10. Larutan dalam air dari tiga senyawa ditunjukkan dalam gambar. Identifikasi setiap senyawa sebagai non-elektrolit, elektrolit lemah, dan elektrolit kuat!
11. Identifikasi masing-masing zat berikut ini sebagai elektrolit kuat, elektrolit lemah, atau nonelektrolit:
(a) H₂O
(b) KCl
(c) HNO₃
(d) CH₃COOH
(e) C₁₂H₂₂O₁₁

12. Arus listrik dapat melalui larutan elektrolit disebabkan oleh pergerakan
(a) elektron saja
(b) kation saja
(c) anion saja
(d) kation dan anion

13. Anda diberi senyawa X yang larut dalam air. Jelaskan bagaimana Anda akan menentukan apakah itu elektrolit atau nonelektrolit! Jika itu adalah elektrolit, bagaimana Anda menentukan apakah itu kuat atau lemah?

14. Dua larutan AgNO₃ dan NaCl dicampur. Manakah dari gambar berikut yang paling merepresentasi campuran?

15. Kelompokan senyawa berikut sebagai larut atau tidak larut dalam air:
(a) Ca₃(PO₄)₂
(b) Mn(OH)₂
(c) AgClO₃
(d) K₂S

16. Tuliskan persamaan ionik dan persamaan ionik bersih untuk reaksi berikut:
(a) AgNO₃(aq) + Na₂SO₄(aq) →
(b) BaCl₂(aq) + ZnSO₄(aq) →
(c) (NH₄)₂CO₃(aq) + CaCl₂(aq) →

17. Manakah dari proses berikut yang kemungkinan akan menghasilkan reaksi pengendapan?
(a) Mencampur larutan NaNO₃ dengan larutan CuSO₄
(b) Mencampur larutan BaCl₂ dengan larutan K₂SO₄
(c)Tuliskan persamaan ion bersih untuk reaksi pengendapannya!

18. Identifikasi masing-masing spesi berikut sebagai asam Brønsted, basa Brønsted, atau keduanya: (a) HI
(b) CH₃COO⁻
(c) H₂PO₄⁻
(d) HSO₄⁻

19. Setarakan persamaan berikut dan tulis persamaan ionik dan persamaan ionik bersih yang sesuai (jika sesuai):
(a) HBr (aq) + NH₃ (aq) →
(b) Ba(OH)₂ (aq) + H₃PO₄ (aq) →
(c) HClO₄ (aq) + Mg(OH)₂ (s) →

20. Untuk reaksi redoks lengkap yang diberikan di sini, (i) pecahka setiap reaksi menjadi setengah-reaksi; (ii) identifikasi zat pengoksidasi; (iii) identifikasi agen pereduksi.
(a) 2Sr + O₂ → 2SrO
(b) 2Li + H₂ → 2LiH
(c) 2Cs + Br₂ → 2CsBr
(d) 3Mg + N₂ → Mg₃N₂

21. Susun spesi berikut dalam urutan peningkatan bilangan oksidasi atom belerang:
(a) H₂S
(b) S₈
(c) H₂SO₄
(d) S²⁻
(e) HS⁻
(f) SO₂
(g) SO₃

22. Berikan bilangan oksidasi dari atom-atom yang digaris bawahi dalam molekul dan ion berikut: 
(a) ClF
(b) IF₇
(c) CH₄
(d) C₂H₂
(e) C₂H₄
(f ) K₂CrO₄
(g) K₂Cr₂O₇
(h) KMnO₄
(i) NaHCO₃
(j) Li
(k) NaIO₃
(l) KO
(m) PF₆⁻
(n) KAuCl₄

23. Tuliskan bilangan oksidasi untuk atom-atom yang digaris bawahi dalam molekul dan ion berikut: 
(a) Cs₂O
(b) CaI
(c) Al₂O₃
(d) H₃AsO₃
(e) TiO₂
( f) MoO₄²⁻
(g) PtCl₄²⁻
(h) PtCl₆²⁻
(i) SnF₂
(j) ClF₃
(k) SbF₆⁻

24. Asam nitrat adalah zat pengoksidasi yang kuat. Nyatakan yang mana dari spesi berikut ini yang paling mungkin dihasilkan jika asam nitrat bereaksi dengan zat pereduksi kuat seperti logam seng, dan jelaskan alasannya: N₂O, NO, NO₂, N₂O₄, N₂O₅, NH₄⁺.

25. Atas dasar pertimbangan bilangan oksidasi, salah satu oksida berikut tidak akan bereaksi dengan molekul oksigen: NO, N₂O, SO₂, SO₃, P₄O₆. Yang mana? Mengapa?

26. Klasifikasikan reaksi redoks berikut:
(a) 2H₂O₂ → 2H₂O + O₂
(b) Mg + 2AgNO₃ → Mg(NO₃)₂ + 2Ag
(c) NH₄NO₂ → N₂ + 2H₂O
(d) H₂ + Br₂ → 2HBr

27. Hitung massa KI dalam gram yang dibutuhkan untuk menyiapkan 5,00 x 10² mL larutannya dengan konsentrasi 2,80 M.

28. Berapa mol MgCl₂ yang ada dalam 60,0 mL larutan 0,100 M MgCl₂?

29. Hitung molaritas masing-masing larutan berikut:
(a) 29,0 g etanol (C₂H₅OH) dalam 545 mL larutan
(b) 15,4 g sukrosa (C₁₂H₂₂O₁₁) dalam 74,0 mL larutan
(c) 9,00 g natrium klorida (NaCl) dalam 86,4 mL larutan

30. Hitung volume dalam mL larutan yang diperlukan untuk memberikan:
(a) 2,14 g natrium klorida dari larutan 0,270 M
(b) 4,30 g etanol dari larutan 1,50 M
(c) 0,85 g asam asetat (CH₃COOH) dari larutan 0,30 M

31. Jelaskan cara menyiapkan 1,00 L dari larutan 0,646 M HCl, dimulai dengan larutan 2,00 M HCl.

32. Bagaimana Anda mempersiapkan 60,0 mL 0,200 M HNO₃ dari larutan stok 4,00 M HNO₃?

33. Suatu larutan 35,2 mL, 1,66 M KMnO₄ dicampur dengan 16,7 mL larutan 0,892 M KMnO₄. Hitung konsentrasi larutan akhir!

34. Jika 30,0 mL 0,150 M CaCl₂ ditambahkan ke 15,0 mL 0,100 M AgNO₃, berapakah massa dalam gram endapan AgCl?

35. Berapa gram NaCl yang dibutuhkan untuk mengendapkan sebagian besar ion Ag⁺ dari 2,50 x 10² mL larutan 0,0113 M AgNO₃? Tuliskan persamaan ion bersih untuk reaksi!

36. Sejumlah 18,68 mL larutan KOH diperlukan untuk menetralkan 0,4218 g KHP. Berapa konsentrasi (dalam molaritas) larutan KOH?

37. Hitung volume dalam mL larutan NaOH 1,420 M yang diperlukan untuk menditrasi larutan berikut:
(a) 25,00 mL larutan 2,430 M HCl
(b) 25,00 mL larutan 4,500 M H₂SO₄
(c) 25,00 mL larutan 1,500 M H₃PO₄

38. Besi (II) dapat dioksidasi dengan larutan asam K₂Cr₂O₇ menurut persamaan ion bersih:
Cr₂O₇²⁻ + 6Fe²⁺ + 14H⁺ → 2Cr³⁺ + 6Fe³⁺ + 7H₂O
Jika dibutuhkan 26,0 mL 0,0250 M K₂Cr₂O₇ untuk menditrasi 25,0 mL larutan yang mengandung Fe²⁺, berapakah konsentrasi molar Fe²⁺?

39. Sampel bijih besi (hanya mengandung ion Fe²⁺) dengan berat 0,2792 g dilarutkan dalam larutan asam encer, dan semua Fe (II) dikonversi menjadi ion Fe (III). Larutannya diperlukan 23,30 mL 0,0194 M K₂Cr₂O₇ untuk titrasi. Hitung persentase berdasarkan berat besi dalam bijih. (Petunjuk: Lihat Soal 4.91 untuk persamaan yang setara)

40. Asam oksalat (H₂C₂O₄) ada dalam banyak tanaman dan sayuran. Jika 24,0 mL larutan 0,0100 M KMnO₄ diperlukan untuk menditrasi 1,00 g sampel H₂C₂O₄ ke titik ekivalen, berapakah persentase massa H₂C₂O₄ dalam sampel? Persamaan ion bersih adalah
2MnO₄⁻ + 16H⁺ + 5C₂O₄²⁻ → 2Mn²⁺ + 10CO₂ + 8H₂O

41. Ion Iodat (IO₃⁻) mengoksidasi SO₃²⁻ dalam larutan asam. Setengah reaksi untuk oksidasi adalah
SO₃²⁻ + H₂O → SO₄²⁻ + 2H⁺ ⁺ 2e⁻ 
Sampel larutan 100,0 mL yang mengandung 1,390 g KIO₃ bereaksi dengan 32,5 mL 0,500 M Na₂SO₃. Bagaimana keadaan oksidasi akhir yodium setelah reaksi terjadi?

42. Jelaskan proses pembentukan ikatan ionik!

43. Jelaskan proses pembentukan ikatan kovalen!

44. Gunakan struktur titik Lewis untuk menggambarkan pembentukan H₂SO₄!

45. Tuliskan konfigurasi elektron ₁₁Na!


Share:

Sifat-Sifat Keperiodikan Unsur

  

SIFAT-SIFAT KEPERIODIKAN UNSUR


Sebelum belajar, kalian mengerjakan prites terlebih dahulu ya...

Link Prites Klik Disini


Materi Sifat-sifat Keperiodikan Unsur

Tabel SPU

Atom merupakan bagian terkecil dari unsur, sehingga dapat disimpulkan bahwa sifat suatu unsur ditentukan oleh keadaan dari atom-atom penyusun unsur tersebut. Atom tersusun dari inti atom (proton dan neutron) yang dikelilingi oleh elektron. Unsur-unsur dalam satu golongan mempunyai elektron valensi yang sama, sedangkan unsur-unsur dalam satu periode mempunyai elektron valensi yang menghuni kulit yang sama. Maka sifat-sifat unsur mempunyai hubungan dengan konfigurasi elektron, dimana unsur-unsur dengan konfigurasi elektron yang mirip akan mempunyai sifat yang mirip. Sifat-sifat yang terlihat dalam tabel periodik unsur yaitu:

1. Jari-jari Atom

Jari-jari atom merupakan jarak dari pusat atom (inti atom) sampai kulit elektron terluar yang ditempati elektron dan menunjukkan ukuran suatu atom. 
Panjang pendeknya jari-jari atom ditentukan oleh 2 faktor, yaitu:
1) Jumlah kulit elektron 
Semakin banyak jumlah kulit yang dimiliki oleh suatu atom, maka jari-jari atomnya makin panjang. 

2) Muatan inti atom 
Bila jumlah kulit dari dua atom sama banyak, maka yang berpengaruh terhadap panjangnya jari-jari atom adalah muatan inti atom. Semakin besar muatan intinya, gaya tarik inti atom terhadap elektron lebih kuat sehingga semakin pendek jari-jari atomnya. 

Berikut gambar dan tabel ukuran atom dalam Tabel Periodik Unsur: 

tabel ukuran atom

tabel ukuran atom

Dari gambar dan tabel tersebut, terlihat bahwa: 
  • Dalam satu golongan semakin ke bawah, periode( jumlah kulit) bertambah, meskipun dalam hal ini jumlah muatan inti semakin banyak tetapi pengaruh bertambahnya jumlah kulit lebih besar daripada pengaruh muatan inti. Akibatnya jarak elektron kulit terluar terhadap inti makin jauh (panjang). 
  • Dalam satu periode semakin ke kanan, jumlah kulit elektronnya tetap tetapi muatan inti (nomor atom) dan jumlah elektron pada kulit semakin bertambah. Akibatnya, gaya tarik inti terhadap elektron terluar semakin kuat sehingga menyebabkan jarak elektron kulit terluar dengan inti semakin dekat (pendek). 
kesimpulan jari-jari atom

Perhatikan contoh soal berikut ini!


2. Energi Ionisasi

 Energi ionisasi adalah energi minimum yang diperlukan atom netral dalam wujud gas untuk melepas suatu elektron paling luar (yang terikat paling lemah) membentuk ion positif. Semakin mudah melepas elektron, maka energi ionisasi semakin kecil. Sebaliknya semakin sukar elektron terlepas dari atom, maka semakin besar energi ionisasinya, 

Energi ionisasi pertama atom unsur-unsur golongan utama dapat dilihat pada tabel:
tabel energi ionisasi

Hubungan energi ionisasi dengan nomor atom unsur-unsur digambarkan pada grafik:

grafik energi ionisasi

Dari tabel dan grafik tersebut terlihat bahwa:

  • Dalam satu golongan semakin kebawah, jari-jari atom semakin besar (elektron valensinya semakin jauh dari inti), akibatnya elektron valensinya semakin mudah dilepas. 
  • Dalam satu periode dari kiri ke kanan cenderung mencapai kestabilan (mempunyai 8 elektron valensi). Golongan I,II, dan III cenderung melepaskan elektron sedangkan golongan V,VI, dan VII cenderung menerima elektron. 

kesimpulan energi ionisasi

Perhatikan contoh soal berikut ini!


3. Afinitas Elektron

 Afinitas elektron adalah besarnya energi yang dihasilkan atau dilepaskan apabila suatu atom menarik sebuah elektron. Afinitas elektron dapat digunakan sebagai ukuran mudah tidaknya suatu atom menangkap elektron. Semakin besar energi yang dilepas (afinitas elektron) menunjukkan bahwa atom tersebut cenderung menarik elektron dan menjadi ion negatif. 

Berikut merupakan gambar dan grafik afinitas elektron beberapa unsur: 

tabel afinitas elektron


Berdasarkan tabel dan grafik diatas, terlihat bahwa:
  • Dalam satu golongan, muatan inti bertambah positif, jari-jari atom makin besar, dan gaya tarik inti terhadap elektron yang ditangkap makin lemah, akibatnya afinitas elektron berkurang. 
  • Dalam satu periode, muatan inti bertambah positif sedangkan jumlah kulit tetap menyebabkan gaya tarik inti terhadap elektron yang ditangkap makin kuat, akibatnya afinitas elektron cenderung bertambah.
kesimpulan afinitas elektron

Perhatikan contoh soal berikut ini!


4. Keelektronegatifan

 Keelektronegatifan atau elektronegatifitas adalah kecenderungan suatu atom dalam menarik pasangan elektron yang digunakan bersama dalam membentuk ikatan. Harga keelektronegatifan bersifat relatif (berupa harga perbandingan suatu atom terhadap atom yang lain). 

Berikut merupakan gambar data skala kuantitatif menurut Pauling :

tabel keelektronegatifan

Semakin besar harga keelektronegatifan suatu atom, semakin mudah bagi atom tersebut untuk menarik pasangan elektron ikatan, atau gaya tarik elektron dari atom tersebut semakin kuat. Dengan demikian, pola kecenderungannya akan sama dengan afinitas elektron.

Keelektronegatifan mempunyai makna yang berlawanan degan energi ionisasi, sebab semakin mudah suatu atom melepaskan elektron berarti semakin sukar dalam menarik elektron, dan sebaliknya. Skala keelektronegatifan tidak mempunyai satuan sebab harga ini didasarkan kepada gaya tarik suatu atom pada elektron, relatif terhadap gaya tarik atom lainnya pada elektron. 

kesimpulan keelektronegatifan

Perhatikan contoh soal berikut ini!



Sekarang coba kerjakan soal berikut pada buku kalian masing-masing dengan mengikuti semua contoh soal diatas!

Untuk menguji kemampuan kalian, silahkan jawab pertanyaan postes berikut ini ya...



Sebelum meninggalkan Media Pembelajaran ini, kalian jangan lupa mengisi reskon kalian dalam menggunakan media ini ya,,,
Untuk link nya ada dibawah ya,,,


Terimakasih❤

Dibuat Oleh: Lumayan Sinaga
Share:

KESTABILAN UNSUR

 

"KESTABILAN UNSUR"

Tonton terlebih dahulu video berikut ya...

    Sebelum belajar materi kestabilan unsur, kalian mengerjakan pretest terlebih dahulu pada link di bawah ya...

    Pada subbab kestabilan unsur, kita akan mempelajari kestabilan unsur gas mulia, cara atom-atom lain mencapai kestabilan seperti atom-atom unsur gas mulia, dan simbol Lewis yang akan memudahkan kita untuk mempelajari ikatan kimia.
1. Kestabilan Unsur Gas Mulia
    Atom-atom dapat dikelompokkan menjadi atom logam, non logam, semi logam, dan gas mulia. Atom-atom gas mulia bersifat stabil, sedangkan atom-atom lainnya bersifat tidak stabil. Atom-atom gas mulia bersifat stabil karena kulit terluarnya terisi penuh oleh elektron. Perhatikan tabel konfigurasi elektron gas mulia dibawah.

    Dari tabel tersebut, terlihat bahwa kulit terluar atom-atom gas mulia terisi penuh oleh 2 elektron (untuk He) dan 8 elektron (untuk atom gas mulia lainnya). Susunan elektron gas mulia disebut susunan duplet (untuk He) dan susunan oktet (untuk gas mulia selain He). Perhatikan tabel beberapa contoh konfigurasi elektron bukan gas mulia berikut.
     Kulit terluar pada atom-atom logam dan nonlogam tidak terisi penuh, itulah sebabnya atom-atom tersebut bersifat tidak stabil. Unsur-unsur lain (kecuali unsur gas mulia) untuk mencapai kestabilan dengan membentuk ikatan kimia melalui serah terima elektron yang akan kita bahas di point selanjutnya. Contoh Soal :



2. Cara Atom-Atom yang Tidak Stabil Mencapai Kestabilannya
    Konfigurasi gas mulia dapat dicapai oleh suatu atom dengan berbagai cara sebagai berikut:
a. Melepaskan Elektron
    Atom-atom unsur yang memiliki elektron valensi dalam jumlah sedikit dalam membentuk suatu senyawa, misalnya unsur-unsur golongan IA, IIA, dan IIIA cenderung mengikuti kaidah oktet dengan cara melepaskan elektron untuk membentuk ion positif. Unsur-unsur ini merupakan unsur-unsur logam (unsur elektropositif). Atom-atom yang melepaskan elektron akan berubah menjadi ion positif atau kation. Contoh Soal: 



b.          b. Menangkap Elektron

    Atom-atom unsur yang memiliki elektron valensi dalam jumlah banyak dalam pembentukan suatu senyawa, misalnya unsur-unsur golongan IV, VA, VIA, dan VIIA memiliki kecenderungan mengikuti kaidah-kaidah oktet dengan cara menerima elektron untuk membentuk ion negatif. Unsur-unsur yang cenderung membentuk ion negatif disebut elektronegatif. Unsur-unsur ini merupakan unsur-unsur non logam (unsur elektronegatif). Atom-atom yang menerima elektron akan berubah menjadi ion negatif atau anion. Contoh soal:




       

3. Lambang Lewis

  G.N. Lewis telah memperkenalkan suatu metode yang simpel tetapi dapat digunakan untuk menjelaskan cara penyusunan elektron valensi dalam molekul. Metode ini menggunakan titik (•), kadang-kadang juga digambarkan dengan silang (x) untuk menggambarkan jumlah elektron valensi. Lewis menggambarkan suatu unsur terdiri atas lambang kimia dikelilingi oleh sejumlah titik atau silang yang melambangkan elektron valensinya. Jika lambang unsur dimisalkan X, lambang lewis untuk unsur golongan utama adalah sebagai berikut.

Langkah-langkah membuat lambang Lewis adalah sebagai berikut:

1.   Tentukan elektron valensinya melalui konfigurasi elektron.

2.      Tuliskan simbol atomnya.

3.  Tempatkan titik mengelilingi simbol atomnya maksimum sampai dengan 4 titik. Titik selanjutnya ditempatkan berpasangan dengan titik sebelumnya. 

        Setiap titik mewakili satu elektron yang ada pada kulit terluar atom tersebut. Tanda titik (•) bisa diganti tanda silang (x). lingkaran (°), dan sebagainya.

Contoh Soal:



    
 
   Untuk menguji pemahaman anda tentang materi kestabilan unsur, silahkan kerjakan postes yang ada di link berikut ya...

   Setelah mengerjakan postes kestabilan unsur, silahkan isi respon anda pada link dibawah ya...



Have a nice day...
Dibuat Oleh: Yessi Srimonika Sipayung
Share:

Konfigurasi Elektron

A. Konfigurasi Elektron
Gambar 1. Lintasan Elektron
Konfigurasi elektron merupakan susunan elektron-elektron pada sebuah atom, ion, atau molekul yang berdasarkan hukum mekanika kuantum. Berdasarkan teori atom Bohr, gerakan elektron mengelilingi inti mengikuti lintasan-lintasan tertentu. Lintasan-lintasan elektron itu dapat dipandang sebagai kulit-kulit atom. Jumlah kulit-kulit atom menentukan konfigurasi elektron. Konfigurasi elektron mengikuti aturan-aturan berikut:
  1. Tiap kulit atom dari yang paling dalam (dekat inti) diberi notasi K, L, M, N, ... untuk menyatakan kulit atom 1, 2, 3, 4, ... dan seterusnya.
  2. Tiap kulit atom maksimum berisi 2n², n adalah nomor kulit atom.
Jadi, kulit K (n = 1) maksimum berisi elektron 2 x 1² = 2 elektron;
kulit L (n = 2) maksimum berisi elektron 2 x 2² = 8 elektron;
kulit M (n = 3) maksimum berisi elektron 2 x 3² = 18 elektron.

Semakin besar nilai n, maka semakin jauh jarak elektron itu dari inti.
Gambar 2. Konfigurasi Elektron

Menurut prinsip Aufbau (Jerman: aufbauen = membangun), konfigurasi elektron dimulai dari subkulit yang memiliki tingkat energi terendah dan diikuti dengan subkulit yang memiliki tingkat energi lebih tinggi. Hal itu disebabkan dalam atom (pada kondisi dasarnya), elektron berada dalam tingkat-tingkat energi terendah. Misalnya, dalam atom hidrogen, elektron ditempatkan pada subtingkatan energi (subkulit) 1s. Jadi konfigurasi elektron hidrogen adalah 1s¹.
Gambar 3. Diagram Tingkatan Energi dan Cara Pengisian Elektron

Berdasarkan diagram tersebut, pengisian elektron dalam suatu atom disusun berdasarkan urutan:

B. Bilangan Kuantum
Bilangan yang menyatakan kedudukan atau posisi elektron dalam atom yang diwakili oleh suatu nilai yang menjelaskan kuantitas kekal dalam sistem dinamis, dibedakan menjadi:

1. Bilangan Kuantum Utama (n)
Bilangan kuantum utama menunjukkan tingkatan energi elektron dan sesuai dengan tingkatan energi atom Bohr (menunjukkan lintasan elektron atau kulit atom). Makin besar nilai n, makin besar ukuran orbital yang dihuni elektron itu. Seperti dalam model atom Bohr, n dapat bernilai 1, 2, 3, ... sampai tak berhingga.

2. Bilangan Kuantum Azimut (l)
Bilangan kuantum azimut menentukan bentuk orbital dan subtingkatan energi. Nilai l bergantung pada nilai bilangan kuantum utama (n). Untuk setiap nilai n yang diberikan, nilai l dari l = 0 sampai l = n – 1.

Tabel 1. Hubungan Kulit (n) dan Nilai 









3. Bilangan Kuantum Magnetik (m)
Bilangan kuantum magnetik menyatakan orientasi orbital atau posisi orbital terhadap orbital lain di dalam ruang. Hal itu disebabkan tiap subkulit tersusun atas satu orbital atau lebih. Nilai bilangan kuantum magnetik berupa bilangan bulat antara –l dan +l. Subtingkatan energi (subkulit) s hanya terdiri atas 1 orbital, subkulit p terdiri atas 3 orbital, subkulit d terdiri atas 5 orbital, dan subkulit f terdiri atas 7 orbital.

Tabel 2. Ringkasan Bilangan Kuantum

4. Bilangan Kuantum Spin (s)
Spin muncul karena elektron berperilaku seperti gasing (mirip dengan rotasi bumi). Gerakan itu menyebabkan elektron bersifat elektromagnet. Hal itu dapat digambarkan seperti mengalirkan arus listrik pada kumparan yang mengelilingi sebuah paku sehingga bersifat magnet. Karena elekton hanya dapat berputar pada salah satu dari magnet, maka spin memiliki dua nilai, yaitu +1/2 dan –1/2.
Gambar 3. Spin Elektron
Pada tahun 1926, Wolfgang Pauli menyelidiki tidak adanya garis pada spektrum pancaran yang seharusnya ada menurut teori yang berlaku. Berdasarkan penyelidikannya, ia menyimpulkan bahwa tidak ada elektron dalam sebuah atom yang boleh memiliki keempat bilangan kuantum yang sama. Kesimpulan itu selanjutnya dikenal dengan nama asas eksklusi (pengecualian/larangan) Pauli.

Menurut asas ini, dua elektron dapat memiliki bilangan kuantum n, l, dan m yang sama, tetapi harus memiliki bilangan kuantum spin (s) yang berbeda. Jadi, asas ini membatasi jumlah elektron dalam tiap orbital. Tiap orbital maksimum diisi oleh dua elektron dan keduanya harus memiliki rotasi yang berlawanan.

Berdasarkan asas pengecualian Pauli, jumlah elektron maksimum di setiap orbital adalah dua. Jumlah elektron maksimum yang dapat ditempatkan pada subtingkatan energi (subkulit) s, p, d, dan f sebagai berikut:

C. Diagram Orbital
Orbital merupakan wilayah atau daerah dalam ruang di sekitar inti atom di mana memiliki kemungkinan tertinggi untuk bisa menemukan elektron atau tempat kebolehjadian elektron. Pasangan elektron dalam satu orbital dinyatakan dengan spin yang berlawanan arah. Hal ini sesuai dengan asas eksklusi Pauli.

Berdasarkan hasil eksperimen, diagram yang terakhir menunjukkan konfigurasi elektron dengan energi terendah. Hasil eksperimen itu diringkas dalam aturan Hund, yaitu dalam suatu subkulit tertentu, tiap orbital dihuni oleh satu elektron terlebih dahulu sebelum ada orbital yang memiliki sepasang elektron. Elektron-elektron tunggal dalam orbital itu mempunyai spin searah (paralel).

Elektron valensi adalah elektron yang berada di kulit terluar. Kulit terluar ditandai dengan bilangan kuantum utamanya (n) tertinggi. Besar elektron valensi dari 1 sampai 8. Besar elektron valensi itu selanjutnya digunakan untuk menyatakan golongan unsur pada tabel periodik.

Disusun oleh: Yasmin
Program Studi Pendidikan Kimia FKIP UPR

Pelajari lebih lanjut : 7.8 Konfigurasi Elektron



Share:

Total Dilihat

Postingan Populer

Label

Postingan Terbaru

Cari Dengan Kata

Ikuti Dengan Email

Web Design By
Fp Comp

Anggota Blog